Skip to content

Commit fe0a5f9

Browse files
Docs preview for PR #3313.
1 parent 468eaef commit fe0a5f9

File tree

10 files changed

+18
-18
lines changed

10 files changed

+18
-18
lines changed

pr-3313/api/languages/python_api.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2320,7 +2320,7 @@ <h3>Spin Operators<a class="headerlink" href="#spin-operators" title="Permalink
23202320
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">random</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#cudaq.operators.spin.SpinOperator.random" title="Permalink to this definition">¶</a></dt>
23212321
<dd><dl class="py function">
23222322
<dt class="sig sig-object py">
2323-
<span class="sig-name descname"><span class="pre">random</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">qubit_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">term_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">seed</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">1526608406</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#cudaq.operators.spin.SpinOperator" title="cudaq.operators.spin.SpinOperator"><span class="pre">SpinOperator</span></a></span></span></dt>
2323+
<span class="sig-name descname"><span class="pre">random</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">qubit_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">term_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">seed</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2582048503</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#cudaq.operators.spin.SpinOperator" title="cudaq.operators.spin.SpinOperator"><span class="pre">SpinOperator</span></a></span></span></dt>
23242324
<dd></dd></dl>
23252325

23262326
<p>Return a random spin operator with the given number of terms (<code class="code docutils literal notranslate"><span class="pre">term_count</span></code>) where each term acts on all targets in the open range [0, qubit_count). An optional seed value may also be provided.</p>

pr-3313/applications/python/adapt_qaoa.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -942,7 +942,7 @@ <h1>ADAPT-QAOA algorithm<a class="headerlink" href="#ADAPT-QAOA-algorithm" title
942942
parameter</p>
943943
<p>3- Optimize all parameters currently in the Ansatz <span class="math notranslate nohighlight">\(\beta_m, \gamma_m = 1, 2, ...k\)</span> such that <span class="math notranslate nohighlight">\(\braket{\psi (k)|H_C|\psi(k)}\)</span> is minimized, and return to the second step.</p>
944944
<p>Below is a schematic representation of the ADAPT-QAOA algorithm explained above.</p>
945-
<div><p><img alt="290d6769457a4bfbab86fde96555bf32" class="no-scaled-link" src="../../_images/adapt-qaoa.png" style="width: 1000px;" /></p>
945+
<div><p><img alt="df5f583caabb4e259ac44c1b1b068c80" class="no-scaled-link" src="../../_images/adapt-qaoa.png" style="width: 1000px;" /></p>
946946
</div><div class="nbinput nblast docutils container">
947947
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[15]:
948948
</pre></div>

pr-3313/applications/python/adapt_vqe.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -939,7 +939,7 @@ <h1>ADAPT-VQE algorithm<a class="headerlink" href="#ADAPT-VQE-algorithm" title="
939939
<p>7- Perform a VQE experiment to re-optimize all parameters in the ansatz.</p>
940940
<p>8- go to step 4</p>
941941
<p>Below is a Schematic depiction of the ADAPT-VQE algorithm</p>
942-
<div><p><img alt="5bd62d8eb4ff48539e50bfe5e96008c1" class="no-scaled-link" src="../../_images/adapt-vqe.png" style="width: 800px;" /></p>
942+
<div><p><img alt="4a046f36c5964ae485be2053ed1ea922" class="no-scaled-link" src="../../_images/adapt-vqe.png" style="width: 800px;" /></p>
943943
</div><div class="nbinput docutils container">
944944
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[1]:
945945
</pre></div>

pr-3313/applications/python/deutsch_algorithm.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -999,7 +999,7 @@ <h2>XOR <span class="math notranslate nohighlight">\(\oplus\)</span><a class="he
999999
</section>
10001000
<section id="Quantum-oracles">
10011001
<h2>Quantum oracles<a class="headerlink" href="#Quantum-oracles" title="Permalink to this heading"></a></h2>
1002-
<p><img alt="aea115a535304c6fb6f16d1e046961e9" class="no-scaled-link" src="../../_images/oracle.png" style="width: 300px; height: 150px;" /></p>
1002+
<p><img alt="fb2343f0738b471b8f06e522722c71e7" class="no-scaled-link" src="../../_images/oracle.png" style="width: 300px; height: 150px;" /></p>
10031003
<p>Suppose we have <span class="math notranslate nohighlight">\(f(x): \{0,1\} \longrightarrow \{0,1\}\)</span>. We can compute this function on a quantum computer using oracles which we treat as black box functions that yield the output with an appropriate sequence of logical gates.</p>
10041004
<p>Above you see an oracle represented as <span class="math notranslate nohighlight">\(U_f\)</span> which allows us to transform the state <span class="math notranslate nohighlight">\(\ket{x}\ket{y}\)</span> into:</p>
10051005
<div class="math notranslate nohighlight">
@@ -1047,7 +1047,7 @@ <h2>Quantum parallelism<a class="headerlink" href="#Quantum-parallelism" title="
10471047
<h2>Deutsch’s Algorithm:<a class="headerlink" href="#Deutsch's-Algorithm:" title="Permalink to this heading"></a></h2>
10481048
<p>Our aim is to find out if <span class="math notranslate nohighlight">\(f: \{0,1\} \longrightarrow \{0,1\}\)</span> is a constant or a balanced function? If constant, <span class="math notranslate nohighlight">\(f(0) = f(1)\)</span>, and if balanced, <span class="math notranslate nohighlight">\(f(0) \neq f(1)\)</span>.</p>
10491049
<p>We step through the circuit diagram below and follow the math after the application of each gate.</p>
1050-
<p><img alt="edfd7127a95c407d815d3aa284fc8e47" class="no-scaled-link" src="../../_images/deutsch.png" style="width: 500px; height: 210px;" /></p>
1050+
<p><img alt="1e4f57426203465ca54157e7ced279ae" class="no-scaled-link" src="../../_images/deutsch.png" style="width: 500px; height: 210px;" /></p>
10511051
<div class="math notranslate nohighlight">
10521052
\[\ket{\psi_0} = \ket{01}
10531053
\tag{1}\]</div>

pr-3313/applications/python/edge_detection.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -979,7 +979,7 @@ <h2>Image<a class="headerlink" href="#Image" title="Permalink to this heading">
979979
<section id="Quantum-Probability-Image-Encoding-(QPIE):">
980980
<h2>Quantum Probability Image Encoding (QPIE):<a class="headerlink" href="#Quantum-Probability-Image-Encoding-(QPIE):" title="Permalink to this heading"></a></h2>
981981
<p>Lets take as an example a classical 2x2 image (4 pixels). We can label each pixel with its position</p>
982-
<div><p><img alt="af628937c8d44842bfb257da8d74b167" class="no-scaled-link" src="../../_images/pixels-img.png" style="width: 200px;" /></p>
982+
<div><p><img alt="0b4c0cfebde3477c9d2eb7312176be51" class="no-scaled-link" src="../../_images/pixels-img.png" style="width: 200px;" /></p>
983983
</div><p>Each pixel will have its own color intensity represented along with its position label as an 8-bit black and white color. To convert the pixel intensity to probability amplitudes of a quantum state</p>
984984
<div class="math notranslate nohighlight">
985985
\[c_i = \frac{I_{yx}}{\sqrt(\sum I^2_{yx})}\]</div>

pr-3313/applications/python/grovers.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1021,7 +1021,7 @@ <h3>Good and Bad States<a class="headerlink" href="#Good-and-Bad-States" title="
10211021
<p>Let us now examine the geometric picture behind our current discussion. We’ll consider the ambient Hilbert space to be spanned by the standard basis vectors <span class="math notranslate nohighlight">\(|0\rangle, |1\rangle, \dots, |N-1\rangle\)</span>, where the full dimension is <span class="math notranslate nohighlight">\(N = 2^n\)</span>. Since the uniform superposition state <span class="math notranslate nohighlight">\(|\xi\rangle\)</span> can be expressed as a linear combination of the states <span class="math notranslate nohighlight">\(|G\rangle\)</span> and <span class="math notranslate nohighlight">\(|B\rangle\)</span> with real coefficients, all three states <span class="math notranslate nohighlight">\(|\xi\rangle, |G\rangle,\)</span> and <span class="math notranslate nohighlight">\(|B\rangle\)</span>
10221022
reside in a two-dimensional real subspace of the ambient Hilbert space, which we can visualize as a 2D plane as in the image below. Since, <span class="math notranslate nohighlight">\(|G\rangle\)</span> and <span class="math notranslate nohighlight">\(|B\rangle\)</span> are orthogonal, we can imagine them graphed as unit vectors in the positive <span class="math notranslate nohighlight">\(y\)</span> and positive <span class="math notranslate nohighlight">\(x\)</span> directions, respectively. From our previous expression, <span class="math notranslate nohighlight">\(\ket{\xi} = \sin(\theta) |G\rangle + \cos(\theta) |B\rangle,\)</span> we see that the state <span class="math notranslate nohighlight">\(|\xi\rangle\)</span> forms an angle <span class="math notranslate nohighlight">\(\theta\)</span> with
10231023
<span class="math notranslate nohighlight">\(|B\rangle\)</span>.</p>
1024-
<div style="text-align: center;"><p><img alt="c652a55ed9504840b03e471ea7335b54" src="../../_images/grovers-2D-plane.png" /></p>
1024+
<div style="text-align: center;"><p><img alt="08d2b1c0e45c460986910e2f942e6e68" src="../../_images/grovers-2D-plane.png" /></p>
10251025
</div><p>Given that the number of marked states <span class="math notranslate nohighlight">\(t\)</span> is typically small compared to <span class="math notranslate nohighlight">\(N\)</span>, it follows that <span class="math notranslate nohighlight">\(\theta = \arcsin\left(\sqrt{\frac{t}{N}}\right)\)</span> is a small angle. This assumption is reasonable, as otherwise, a sufficient number of independent queries to the oracle would likely yield a solution through classical search methods.</p>
10261026
</section>
10271027
<section id="Step-2:-Oracle-application">
@@ -1136,9 +1136,9 @@ <h4>Completing Step 3<a class="headerlink" href="#Completing-Step-3" title="Perm
11361136
<div class="math notranslate nohighlight">
11371137
\[\mathcal{G} = r_\xi \circ r_B = H^{\otimes n} \big( 2|0^{\otimes n} \rangle \langle 0^{\otimes n}| - \text{Id} \big) H^{\otimes n} \mathcal{O}_f.\]</div>
11381138
<p>The circuit diagram below puts together steps 1 through 3:</p>
1139-
<div style="text-align: center;"><p><img alt="0ad9a95beac247d894b8c0ec9f8417e5" src="../../_images/grovers-steps1-3.png" /></p>
1139+
<div style="text-align: center;"><p><img alt="0c78ba0ce3ce475c865b0db519092088" src="../../_images/grovers-steps1-3.png" /></p>
11401140
</div><p>Running this circuit initializes <span class="math notranslate nohighlight">\(\ket{\xi}\)</span> and performs a rotation by <span class="math notranslate nohighlight">\(2\theta\)</span> (twice the angle between <span class="math notranslate nohighlight">\(|\xi\rangle\)</span> and <span class="math notranslate nohighlight">\(|B\rangle\)</span>) in the direction from <span class="math notranslate nohighlight">\(|B\rangle\)</span> to <span class="math notranslate nohighlight">\(|G\rangle\)</span>.</p>
1141-
<div style="text-align: center;"><p><img alt="138886528ac74345963519f107c93afe" src="../../_images/grovers-full-rotation.png" /></p>
1141+
<div style="text-align: center;"><p><img alt="2bc8fb71b2f740aeb32bc85f0edc7b5b" src="../../_images/grovers-full-rotation.png" /></p>
11421142
</div><p>Let’s verify that the state resulting from one iteration of Grover’s algorithm brings us closer to the good state, <span class="math notranslate nohighlight">\(\ket{G}\)</span>. In particular, notice that the amplitudes of <code class="docutils literal notranslate"><span class="pre">1001</span></code> and <code class="docutils literal notranslate"><span class="pre">1111</span></code> in the resulting state have been amplified compared to the equal superposition of states.</p>
11431143
<div class="nbinput docutils container">
11441144
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[18]:

pr-3313/applications/python/qm_mm_pe.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -939,7 +939,7 @@ <h2>Key concepts:<a class="headerlink" href="#Key-concepts:" title="Permalink to
939939
</section>
940940
<section id="PE-VQE-SCF-Algorithm-Steps">
941941
<h2>PE-VQE-SCF Algorithm Steps<a class="headerlink" href="#PE-VQE-SCF-Algorithm-Steps" title="Permalink to this heading"></a></h2>
942-
<div><p><img alt="4c0862d87d1e4b6ea366983869e57e3a" class="no-scaled-link" src="../../_images/qm-mm-pe.png" style="width: 600px;" /></p>
942+
<div><p><img alt="1ea3bd712a7e41ec9527ecfd6ac61f33" class="no-scaled-link" src="../../_images/qm-mm-pe.png" style="width: 600px;" /></p>
943943
</div><section id="Step-1:-Initialize-(Classical-pre-processing)">
944944
<h3>Step 1: Initialize (Classical pre-processing)<a class="headerlink" href="#Step-1:-Initialize-(Classical-pre-processing)" title="Permalink to this heading"></a></h3>
945945
<ul class="simple">

pr-3313/applications/python/quantum_transformer.html

Lines changed: 5 additions & 5 deletions
Large diffs are not rendered by default.

pr-3313/examples/python/performance_optimizations.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -927,9 +927,9 @@ <h1>Optimizing Performance<a class="headerlink" href="#Optimizing-Performance" t
927927
<section id="Gate-Fusion">
928928
<h2>Gate Fusion<a class="headerlink" href="#Gate-Fusion" title="Permalink to this heading"></a></h2>
929929
<p>Gate fusion is an optimization technique where consecutive gates are combined into a single gate operation to improve the efficiency of the simulation (See figure below). By targeting the <code class="docutils literal notranslate"><span class="pre">nvidia-mgpu</span></code> backend and setting the <code class="docutils literal notranslate"><span class="pre">CUDAQ_MGPU_FUSE</span></code> environment variable, you can select the degree of fusion that takes place. A full command line example would look like <code class="docutils literal notranslate"><span class="pre">CUDAQ_MGPU_FUSE=4</span> <span class="pre">python</span> <span class="pre">c2h2VQE.py</span> <span class="pre">--target</span> <span class="pre">nvidia</span> <span class="pre">--target-option</span> <span class="pre">fp64,mgpu</span></code></p>
930-
<p><img alt="3ea1e1471a3e4c57a82843e37baa9214" src="../../_images/gate-fuse.png" /></p>
930+
<p><img alt="2f21b37565a045ebb1adde51ce6d8758" src="../../_images/gate-fuse.png" /></p>
931931
<p>The importance of gate fusion is system dependent, but can have a large influence on the performance of the simulation. See the example below for a 24 qubit VQE experiment where changing the fusion level resulted in significant performance boosts.</p>
932-
<p><img alt="1f3ec79f56d84b988199b30c33b10c47" src="../../_images/gatefusion.png" /></p>
932+
<p><img alt="b7334b35590446b688e9d1b1b4cd84ef" src="../../_images/gatefusion.png" /></p>
933933
</section>
934934
</section>
935935

pr-3313/searchindex.js

Lines changed: 1 addition & 1 deletion
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

0 commit comments

Comments
 (0)