|
| 1 | +from typing import Union, List, Any, Optional, Dict |
| 2 | + |
| 3 | +from pyspark import keyword_only |
| 4 | +from pyspark.ml.classification import _JavaProbabilisticClassifier, _JavaProbabilisticClassificationModel |
| 5 | + |
| 6 | +from .params import XGBoostParams |
| 7 | + |
| 8 | + |
| 9 | +class XGBoostClassifier(_JavaProbabilisticClassifier["XGBoostClassificationModel"], XGBoostParams): |
| 10 | + _input_kwargs: Dict[str, Any] |
| 11 | + |
| 12 | + @keyword_only |
| 13 | + def __init__( |
| 14 | + self, |
| 15 | + *, |
| 16 | + featuresCol: Union[str, List[str]] = "features", |
| 17 | + labelCol: str = "label", |
| 18 | + predictionCol: str = "prediction", |
| 19 | + probabilityCol: str = "probability", |
| 20 | + rawPredictionCol: str = "rawPrediction", |
| 21 | + # SparkParams |
| 22 | + numWorkers: Optional[int] = None, |
| 23 | + numRound: Optional[int] = None, |
| 24 | + forceRepartition: Optional[bool] = None, |
| 25 | + numEarlyStoppingRounds: Optional[int] = None, |
| 26 | + inferBatchSize: Optional[int] = None, |
| 27 | + missing: Optional[float] = None, |
| 28 | + useExternalMemory: Optional[bool] = None, |
| 29 | + maxNumDevicePages: Optional[int] = None, |
| 30 | + maxQuantileBatches: Optional[int] = None, |
| 31 | + minCachePageBytes: Optional[int] = None, |
| 32 | + feature_names: Optional[List[str]] = None, |
| 33 | + feature_types: Optional[List[str]] = None, |
| 34 | + # RabitParams |
| 35 | + rabitTrackerTimeout: Optional[int] = None, |
| 36 | + rabitTrackerHostIp: Optional[str] = None, |
| 37 | + rabitTrackerPort: Optional[int] = None, |
| 38 | + # GeneralParams |
| 39 | + booster: Optional[str] = None, |
| 40 | + device: Optional[str] = None, |
| 41 | + verbosity: Optional[int] = None, |
| 42 | + validate_parameters: Optional[bool] = None, |
| 43 | + nthread: Optional[int] = None, |
| 44 | + # TreeBoosterParams |
| 45 | + eta: Optional[float] = None, |
| 46 | + gamma: Optional[float] = None, |
| 47 | + max_depth: Optional[int] = None, |
| 48 | + min_child_weight: Optional[float] = None, |
| 49 | + max_delta_step: Optional[float] = None, |
| 50 | + subsample: Optional[float] = None, |
| 51 | + sampling_method: Optional[str] = None, |
| 52 | + colsample_bytree: Optional[float] = None, |
| 53 | + colsample_bylevel: Optional[float] = None, |
| 54 | + colsample_bynode: Optional[float] = None, |
| 55 | + reg_lambda: Optional[float] = None, |
| 56 | + alpha: Optional[float] = None, |
| 57 | + tree_method: Optional[str] = None, |
| 58 | + scale_pos_weight: Optional[float] = None, |
| 59 | + updater: Optional[str] = None, |
| 60 | + refresh_leaf: Optional[bool] = None, |
| 61 | + process_type: Optional[str] = None, |
| 62 | + grow_policy: Optional[str] = None, |
| 63 | + max_leaves: Optional[int] = None, |
| 64 | + max_bin: Optional[int] = None, |
| 65 | + num_parallel_tree: Optional[int] = None, |
| 66 | + monotone_constraints: Optional[List[int]] = None, |
| 67 | + interaction_constraints: Optional[str] = None, |
| 68 | + max_cached_hist_node: Optional[int] = None, |
| 69 | + # LearningTaskParams |
| 70 | + objective: Optional[str] = None, |
| 71 | + num_class: Optional[int] = None, |
| 72 | + base_score: Optional[float] = None, |
| 73 | + eval_metric: Optional[str] = None, |
| 74 | + seed: Optional[int] = None, |
| 75 | + seed_per_iteration: Optional[bool] = None, |
| 76 | + tweedie_variance_power: Optional[float] = None, |
| 77 | + huber_slope: Optional[float] = None, |
| 78 | + aft_loss_distribution: Optional[str] = None, |
| 79 | + lambdarank_pair_method: Optional[str] = None, |
| 80 | + lambdarank_num_pair_per_sample: Optional[int] = None, |
| 81 | + lambdarank_unbiased: Optional[bool] = None, |
| 82 | + lambdarank_bias_norm: Optional[float] = None, |
| 83 | + ndcg_exp_gain: Optional[bool] = None, |
| 84 | + # DartBoosterParams |
| 85 | + sample_type: Optional[str] = None, |
| 86 | + normalize_type: Optional[str] = None, |
| 87 | + rate_drop: Optional[float] = None, |
| 88 | + one_drop: Optional[bool] = None, |
| 89 | + skip_drop: Optional[float] = None, |
| 90 | + **kwargs: Any, |
| 91 | + ): |
| 92 | + super().__init__() |
| 93 | + self._java_obj = self._new_java_obj( |
| 94 | + "ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier", self.uid |
| 95 | + ) |
| 96 | + self._set_params(**self._input_kwargs) |
| 97 | + |
| 98 | + def _create_model(self, java_model: "JavaObject") -> "XGBoostClassificationModel": |
| 99 | + return XGBoostClassificationModel(java_model) |
| 100 | + |
| 101 | + |
| 102 | +class XGBoostClassificationModel(_JavaProbabilisticClassificationModel, XGBoostParams): |
| 103 | + pass |
0 commit comments