@@ -1624,7 +1624,7 @@ def fit(
1624
1624
`keras.utils.Sequence` input only. If `True`, use process-based
1625
1625
threading. If unspecified, `use_multiprocessing` will default to
1626
1626
`False`. Note that because this implementation relies on
1627
- multiprocessing, you should not pass non-picklable arguments to
1627
+ multiprocessing, you should not pass non-pickleable arguments to
1628
1628
the generator as they can't be passed easily to children
1629
1629
processes.
1630
1630
@@ -2154,7 +2154,7 @@ def evaluate(
2154
2154
`keras.utils.Sequence` input only. If `True`, use process-based
2155
2155
threading. If unspecified, `use_multiprocessing` will default to
2156
2156
`False`. Note that because this implementation relies on
2157
- multiprocessing, you should not pass non-picklable arguments to
2157
+ multiprocessing, you should not pass non-pickleable arguments to
2158
2158
the generator as they can't be passed easily to children
2159
2159
processes.
2160
2160
return_dict: If `True`, loss and metric results are returned as a
@@ -2507,7 +2507,7 @@ def predict(
2507
2507
`keras.utils.Sequence` input only. If `True`, use process-based
2508
2508
threading. If unspecified, `use_multiprocessing` will default to
2509
2509
`False`. Note that because this implementation relies on
2510
- multiprocessing, you should not pass non-picklable arguments to
2510
+ multiprocessing, you should not pass non-pickleable arguments to
2511
2511
the generator as they can't be passed easily to children
2512
2512
processes.
2513
2513
0 commit comments