|
| 1 | +// Copyright (c) Microsoft. All rights reserved. |
| 2 | + |
| 3 | +using Azure.AI.OpenAI; |
| 4 | +using Azure.Identity; |
| 5 | +using Microsoft.Extensions.AI; |
| 6 | +using Microsoft.SemanticKernel; |
| 7 | +using Microsoft.SemanticKernel.Agents; |
| 8 | +using Microsoft.SemanticKernel.Connectors.InMemory; |
| 9 | +using Microsoft.SemanticKernel.Functions; |
| 10 | + |
| 11 | +namespace Agents; |
| 12 | + |
| 13 | +#pragma warning disable SKEXP0130 // Type is for evaluation purposes only and is subject to change or removal in future updates. Suppress this diagnostic to proceed. |
| 14 | + |
| 15 | +/// <summary> |
| 16 | +/// Demonstrates the creation of a <see cref="ChatCompletionAgent"/> and adding capabilities |
| 17 | +/// for contextual function selection to it. Contextual function selection involves using |
| 18 | +/// Retrieval-Augmented Generation (RAG) to identify and select the most relevant functions |
| 19 | +/// based on the current context. The provider vectorizes the function names and descriptions, |
| 20 | +/// stores them in a specified vector store, and performs a vector search to find and provide |
| 21 | +/// the most pertinent functions to the AI model/agent for a given context. |
| 22 | +/// </summary> |
| 23 | +public class ChatCompletion_ContextualFunctionSelection(ITestOutputHelper output) : BaseTest(output) |
| 24 | +{ |
| 25 | + /// <summary> |
| 26 | + /// Shows how to configure agent to use <see cref="ContextualFunctionProvider"/> |
| 27 | + /// to enable contextual function selection based on the current invocation context. |
| 28 | + /// </summary> |
| 29 | + [Fact] |
| 30 | + private async Task SelectFunctionsRelevantToCurrentInvocationContext() |
| 31 | + { |
| 32 | + var embeddingGenerator = new AzureOpenAIClient(new Uri(TestConfiguration.AzureOpenAIEmbeddings.Endpoint), new AzureCliCredential()) |
| 33 | + .GetEmbeddingClient(TestConfiguration.AzureOpenAIEmbeddings.DeploymentName) |
| 34 | + .AsIEmbeddingGenerator(1536); |
| 35 | + |
| 36 | + // Create our agent. |
| 37 | + Kernel kernel = this.CreateKernelWithChatCompletion(); |
| 38 | + ChatCompletionAgent agent = |
| 39 | + new() |
| 40 | + { |
| 41 | + Name = "ReviewGuru", |
| 42 | + Instructions = "You are a friendly assistant that summarizes key points and sentiments from customer reviews. " + |
| 43 | + "For each response, list available functions", |
| 44 | + Kernel = kernel, |
| 45 | + Arguments = new(new PromptExecutionSettings { FunctionChoiceBehavior = FunctionChoiceBehavior.Auto(options: new FunctionChoiceBehaviorOptions { RetainArgumentTypes = true }) }) |
| 46 | + }; |
| 47 | + |
| 48 | + // Create a thread and register context based function selection provider that will do RAG on |
| 49 | + // provided functions to advertise only those that are relevant to the current context. |
| 50 | + ChatHistoryAgentThread agentThread = new(); |
| 51 | + |
| 52 | + var allAvailableFunctions = GetAvailableFunctions(); |
| 53 | + |
| 54 | + agentThread.AIContextProviders.Add( |
| 55 | + new ContextualFunctionProvider( |
| 56 | + vectorStore: new InMemoryVectorStore(new InMemoryVectorStoreOptions() { EmbeddingGenerator = embeddingGenerator }), |
| 57 | + vectorDimensions: 1536, |
| 58 | + functions: allAvailableFunctions, |
| 59 | + maxNumberOfFunctions: 3, // Instruct the provider to return a maximum of 3 relevant functions |
| 60 | + loggerFactory: this.LoggerFactory |
| 61 | + ) |
| 62 | + ); |
| 63 | + |
| 64 | + // Invoke and display assistant response |
| 65 | + ChatMessageContent message = await agent.InvokeAsync("Get and summarize customer review.", agentThread).FirstAsync(); |
| 66 | + Console.WriteLine(message.Content); |
| 67 | + |
| 68 | + //Expected output: |
| 69 | + /* |
| 70 | + Retrieves and summarizes customer reviews. |
| 71 | + |
| 72 | + ### Customer Reviews: |
| 73 | + 1. **John D.** - ★★★★★ |
| 74 | + *Comment:* Great product and fast shipping! |
| 75 | + *Date:* 2023-10-01 |
| 76 | + 2. **Jane S.** - ★★★★ |
| 77 | + *Comment:* Good quality, but delivery was a bit slow. |
| 78 | + *Date:* 2023-09-28 |
| 79 | + 3. **Mike J.** - ★★★ |
| 80 | + *Comment:* Average. Works as expected. |
| 81 | + *Date:* 2023-09-25 |
| 82 | + |
| 83 | + ### Summary: |
| 84 | + The reviews indicate overall customer satisfaction, with highlights on product quality and shipping efficiency. |
| 85 | + While some customers experienced excellent service, others mentioned areas for improvement, particularly regarding delivery times. |
| 86 | + |
| 87 | + If you need further analysis or insights, feel free to ask! |
| 88 | + |
| 89 | + Available functions: |
| 90 | + - Tools-GetCustomerReviews |
| 91 | + - Tools-Summarize |
| 92 | + - Tools-CollectSentiments |
| 93 | + */ |
| 94 | + } |
| 95 | + |
| 96 | + /// <summary> |
| 97 | + /// Shows how to configure agent to use <see cref="ContextualFunctionProvider"/> |
| 98 | + /// to enable contextual function selection based on the previous and current invocation context. |
| 99 | + /// </summary> |
| 100 | + [Fact] |
| 101 | + private async Task SelectFunctionsBasedOnPreviousAndCurrentInvocationContext() |
| 102 | + { |
| 103 | + var embeddingGenerator = new AzureOpenAIClient(new Uri(TestConfiguration.AzureOpenAIEmbeddings.Endpoint), new AzureCliCredential()) |
| 104 | + .GetEmbeddingClient(TestConfiguration.AzureOpenAIEmbeddings.DeploymentName) |
| 105 | + .AsIEmbeddingGenerator(1536); |
| 106 | + |
| 107 | + // Create our agent. |
| 108 | + Kernel kernel = this.CreateKernelWithChatCompletion(); |
| 109 | + ChatCompletionAgent agent = |
| 110 | + new() |
| 111 | + { |
| 112 | + Name = "AzureAssistant", |
| 113 | + Instructions = "You are a helpful assistant that helps with Azure resource management. " + |
| 114 | + "Avoid including the phrase like 'If you need further assistance or have any additional tasks, feel free to let me know!' in any responses.", |
| 115 | + Kernel = kernel, |
| 116 | + Arguments = new(new PromptExecutionSettings { FunctionChoiceBehavior = FunctionChoiceBehavior.Auto(options: new FunctionChoiceBehaviorOptions { RetainArgumentTypes = true }) }) |
| 117 | + }; |
| 118 | + |
| 119 | + // Create a thread and register context based function selection provider that will do RAG on |
| 120 | + // provided functions to advertise only those that are relevant to the current context. |
| 121 | + ChatHistoryAgentThread agentThread = new(); |
| 122 | + |
| 123 | + var allAvailableFunctions = GetAvailableFunctions(); |
| 124 | + |
| 125 | + agentThread.AIContextProviders.Add( |
| 126 | + new ContextualFunctionProvider( |
| 127 | + vectorStore: new InMemoryVectorStore(new InMemoryVectorStoreOptions() { EmbeddingGenerator = embeddingGenerator }), |
| 128 | + vectorDimensions: 1536, |
| 129 | + functions: allAvailableFunctions, |
| 130 | + maxNumberOfFunctions: 1, // Instruct the provider to return only one relevant function |
| 131 | + loggerFactory: this.LoggerFactory, |
| 132 | + options: new ContextualFunctionProviderOptions |
| 133 | + { |
| 134 | + NumberOfRecentMessagesInContext = 1 // Use only the last message from the previous agent invocation |
| 135 | + } |
| 136 | + ) |
| 137 | + ); |
| 138 | + |
| 139 | + // Ask agent to provision a VM on Azure. The contextual function selection provider will return only one relevant function: `ProvisionVM` |
| 140 | + ChatMessageContent message = await agent.InvokeAsync("Please provision a VM on Azure", agentThread).FirstAsync(); |
| 141 | + Console.WriteLine(message.Content); |
| 142 | + |
| 143 | + //Expected output: "A virtual machine has been successfully provisioned on Azure with the ID: 7f2aa1e4-13ac-4875-9e63-278ee82f3729." |
| 144 | + |
| 145 | + // Ask the agent to deploy the VM, intentionally referring to the VM as "it". |
| 146 | + // This demonstrates that the contextual function selection provider uses the last message from the previous invocation |
| 147 | + // to infer that the user is referring to the VM provisioned in the invocation and not any other Azure resource. |
| 148 | + // The provider will return only one relevant function to deploy the VM: `DeployVM` |
| 149 | + message = await agent.InvokeAsync("Deploy it", agentThread).FirstAsync(); |
| 150 | + Console.WriteLine(message.Content); |
| 151 | + |
| 152 | + //Expected output: "The virtual machine with ID: 7f2aa1e4-13ac-4875-9e63-278ee82f3729 has been successfully deployed." |
| 153 | + } |
| 154 | + |
| 155 | + /// <summary> |
| 156 | + /// Returns a list of functions that belong to different categories. |
| 157 | + /// Some categories/functions are related to the prompt, while others |
| 158 | + /// are not. This is intentionally done to demonstrate the contextual |
| 159 | + /// function selection capabilities of the provider. |
| 160 | + /// </summary> |
| 161 | + private IReadOnlyList<AIFunction> GetAvailableFunctions() |
| 162 | + { |
| 163 | + List<AIFunction> reviewFunctions = [ |
| 164 | + AIFunctionFactory.Create(() => """ |
| 165 | + [ |
| 166 | + { |
| 167 | + "reviewer": "John D.", |
| 168 | + "date": "2023-10-01", |
| 169 | + "rating": 5, |
| 170 | + "comment": "Great product and fast shipping!" |
| 171 | + }, |
| 172 | + { |
| 173 | + "reviewer": "Jane S.", |
| 174 | + "date": "2023-09-28", |
| 175 | + "rating": 4, |
| 176 | + "comment": "Good quality, but delivery was a bit slow." |
| 177 | + }, |
| 178 | + { |
| 179 | + "reviewer": "Mike J.", |
| 180 | + "date": "2023-09-25", |
| 181 | + "rating": 3, |
| 182 | + "comment": "Average. Works as expected." |
| 183 | + } |
| 184 | + ] |
| 185 | + """ |
| 186 | + , "GetCustomerReviews"), |
| 187 | + ]; |
| 188 | + |
| 189 | + List<AIFunction> sentimentFunctions = [ |
| 190 | + AIFunctionFactory.Create((string text) => "The collected sentiment is mostly positive with a few neutral and negative opinions.", "CollectSentiments"), |
| 191 | + AIFunctionFactory.Create((string text) => "Sentiment trend identified: predominantly positive with increasing positive feedback.", "IdentifySentimentTrend"), |
| 192 | + ]; |
| 193 | + |
| 194 | + List<AIFunction> summaryFunctions = [ |
| 195 | + AIFunctionFactory.Create((string text) => "Summary generated based on input data: key points include market growth and customer satisfaction.", "Summarize"), |
| 196 | + AIFunctionFactory.Create((string text) => "Extracted themes: innovation, efficiency, customer satisfaction.", "ExtractThemes"), |
| 197 | + ]; |
| 198 | + |
| 199 | + List<AIFunction> communicationFunctions = [ |
| 200 | + AIFunctionFactory.Create((string address, string content) => "Email sent.", "SendEmail"), |
| 201 | + AIFunctionFactory.Create((string number, string text) => "Message sent.", "SendSms"), |
| 202 | + AIFunctionFactory.Create(() => "[email protected]", "MyEmail"), |
| 203 | + ]; |
| 204 | + |
| 205 | + List<AIFunction> dateTimeFunctions = [ |
| 206 | + AIFunctionFactory.Create(() => DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss"), "GetCurrentDateTime"), |
| 207 | + AIFunctionFactory.Create(() => DateTime.UtcNow.ToString("yyyy-MM-dd HH:mm:ss"), "GetCurrentUtcDateTime"), |
| 208 | + ]; |
| 209 | + |
| 210 | + List<AIFunction> azureFunctions = [ |
| 211 | + AIFunctionFactory.Create(() => $"Resource group provisioned: Id:{Guid.NewGuid()}", "ProvisionResourceGroup"), |
| 212 | + AIFunctionFactory.Create((Guid id) => $"Resource group deployed: Id:{id}", "DeployResourceGroup"), |
| 213 | + |
| 214 | + AIFunctionFactory.Create(() => $"Storage account provisioned: Id:{Guid.NewGuid()}", "ProvisionStorageAccount"), |
| 215 | + AIFunctionFactory.Create((Guid id) => $"Storage account deployed: Id:{id}", "DeployStorageAccount"), |
| 216 | + |
| 217 | + AIFunctionFactory.Create(() => $"VM provisioned: Id:{Guid.NewGuid()}", "ProvisionVM"), |
| 218 | + AIFunctionFactory.Create((Guid id) => $"VM deployed: Id:{id}", "DeployVM"), |
| 219 | + ]; |
| 220 | + |
| 221 | + return [.. reviewFunctions, .. sentimentFunctions, .. summaryFunctions, .. communicationFunctions, .. dateTimeFunctions, .. azureFunctions]; |
| 222 | + } |
| 223 | +} |
0 commit comments