Skip to content

Commit 950cc63

Browse files
committed
Remove duplicated concat testcase with crop primitive
Signed-off-by: yuan.xiong <[email protected]>
1 parent f631f5e commit 950cc63

File tree

1 file changed

+0
-103
lines changed

1 file changed

+0
-103
lines changed

src/plugins/intel_gpu/tests/unit/test_cases/concatenation_gpu_test.cpp

Lines changed: 0 additions & 103 deletions
Original file line numberDiff line numberDiff line change
@@ -1780,109 +1780,6 @@ TEST(concat_gpu_onednn, b_fs_yx_fsv16_input_types) {
17801780
}
17811781
}
17821782

1783-
TEST(concat_gpu_onednn, crop_b_fs_yx_fsv16_input_types) {
1784-
auto& engine = get_test_engine();
1785-
if (!engine.get_device_info().supports_immad)
1786-
return;
1787-
1788-
tests::random_generator rg(GET_SUITE_NAME);
1789-
const int32_t input_b = 1, input_f = 3, input_y = 416, input_x = 416;
1790-
uint32_t test_stride = 8;
1791-
int32_t test_feature = 88, test_kernel = 8;
1792-
int32_t test_y = input_y / test_stride, test_x = input_x / test_stride;
1793-
1794-
auto test_dt = data_types::f16;
1795-
auto test_format = format::b_fs_yx_fsv16;
1796-
1797-
layout input0_layout = { test_dt, format::bfyx, { input_b, input_f, input_x, input_y } };
1798-
auto input0 = engine.allocate_memory(input0_layout);
1799-
1800-
using test_data_type = ov::float16;
1801-
auto data_input = rg.generate_random_4d<test_data_type>(input_b, input_f, input_y, input_x, -1, 1);
1802-
auto data_input_flat = flatten_4d(format::bfyx, data_input);
1803-
set_values<test_data_type>(input0, data_input_flat);
1804-
1805-
auto weights0 = engine.allocate_memory({ data_types::f16, format::bfyx, { test_feature * 2, input_f, test_kernel, test_kernel } });
1806-
auto biases0 = engine.allocate_memory({ data_types::f16, format::bfyx, { 1, test_feature * 2, 1, 1 } });
1807-
std::vector<test_data_type> weights0_flat(test_feature * 2 * input_f * test_kernel * test_kernel, 1.0);
1808-
std::vector<test_data_type> bias0_flat(1 * test_feature * 2 * 1 * 1, 1.0);
1809-
set_values(weights0, weights0_flat);
1810-
set_values(biases0, bias0_flat);
1811-
1812-
auto weights1 = engine.allocate_memory({ data_types::f16, format::bfyx, { test_feature, test_feature, 1, 1 } });
1813-
auto biases1 = engine.allocate_memory({ data_types::f16, format::bfyx, { 1, test_feature, 1, 1 } });
1814-
std::vector<test_data_type> weights1_flat(test_feature * test_feature * 1 * 1, 1.0);
1815-
std::vector<test_data_type> bias1_flat(1 * test_feature * 1 * 1, 1.0);
1816-
set_values(weights1, weights1_flat);
1817-
set_values(biases1, bias1_flat);
1818-
1819-
auto output_name = "reorder";
1820-
layout reorder_layout = { test_dt, format::bfyx, { input_b, test_feature * 2, input_x, input_y } };
1821-
1822-
ov::intel_gpu::ImplementationDesc impl;
1823-
std::vector<test_data_type> outputs_ref(input_b * test_feature * 2 * test_y * test_x);
1824-
for (int i = 0; i < 2; ++i) {
1825-
if (i == 0) {
1826-
impl = { test_format, std::string(""), impl_types::ocl };
1827-
} else {
1828-
impl = { test_format, std::string(""), impl_types::onednn };
1829-
}
1830-
1831-
topology topology(
1832-
input_layout("input0", input0_layout),
1833-
data("weights0", weights0),
1834-
data("biases0", biases0),
1835-
convolution( "conv0", input_info("input0"), "weights0", "biases0", 1, {test_stride, test_stride}, {1, 1}, {0, 0}, {0, 0}, false),
1836-
crop("variadic_split.out0", input_info("conv0"), {input_b, test_feature, test_x, test_y }, {0, 0, 0, 0}),
1837-
crop("variadic_split.out1", input_info("conv0"), {input_b, test_feature, test_x, test_y }, {0, test_feature, 0, 0}),
1838-
data("weights1", weights1),
1839-
data("biases1", biases1),
1840-
convolution( "conv1", input_info("variadic_split.out1"), "weights1", "biases1", 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, false),
1841-
concatenation("concat",
1842-
{ input_info("variadic_split.out0"), input_info("conv1") },
1843-
1,
1844-
test_dt),
1845-
reorder("reorder", input_info("concat"), reorder_layout)
1846-
);
1847-
1848-
ExecutionConfig cfg = get_test_default_config(engine);
1849-
cfg.set_property(ov::intel_gpu::custom_outputs(std::vector<std::string>{ output_name }));
1850-
cfg.set_property(ov::intel_gpu::force_implementations(ov::intel_gpu::ImplForcingMap{ {"concat", impl} }));
1851-
network network_test(engine, topology, cfg);
1852-
1853-
network_test.set_input_data("input0", input0);
1854-
auto outputs = network_test.execute();
1855-
1856-
ASSERT_EQ(outputs.size(), size_t(1));
1857-
ASSERT_EQ(outputs.begin()->first, output_name);
1858-
1859-
auto output_memory = outputs.at(output_name).get_memory();
1860-
auto output_layout = output_memory->get_layout();
1861-
int y_size = output_layout.spatial(1);
1862-
int x_size = output_layout.spatial(0);
1863-
int f_size = output_layout.feature();
1864-
int b_size = output_layout.batch();
1865-
1866-
ASSERT_EQ(output_layout.format, format::bfyx);
1867-
ASSERT_EQ(y_size, test_y);
1868-
ASSERT_EQ(x_size, test_x);
1869-
ASSERT_EQ(f_size, test_feature * 2);
1870-
ASSERT_EQ(b_size, input_b);
1871-
1872-
cldnn::mem_lock<test_data_type> output_ptr(output_memory, get_test_stream());
1873-
1874-
if (i == 0) {
1875-
for (size_t x = 0; x < output_layout.count(); ++x) {
1876-
outputs_ref[x] = output_ptr[x];
1877-
}
1878-
} else {
1879-
for (size_t x = 0; x < output_layout.count(); ++x) {
1880-
ASSERT_EQ(output_ptr[x], outputs_ref[x]);
1881-
}
1882-
}
1883-
}
1884-
}
1885-
18861783
template <typename Type>
18871784
struct concat_gpu_4d_implicit_onednn : public concat_gpu_implicit {
18881785
public:

0 commit comments

Comments
 (0)