Skip to content

bigict/ProFOLD2

Repository files navigation

ProFOLD2

GitHub License Conventional Commits GitHub Actions Workflow Status GitHub Release

ProFOLD2 - A protein 3D structure prediction application

Requirements

Running ProFOLD2

  1. Clone this repository and cd into it.
$git clone https://github.com/bigict/ProFOLD2.git
$cd ProFOLD2
$git submodule update --init  # required if use FusedEvoformer, recommended.
  1. Create a virtual enviroment and install dependencies
$conda create -n profold2 python=3.11
$conda activate profold2
$bash install_env.sh
  1. Train a model
$python main.py train --prefix=OUTPUT_DIR

There are a lot of parameters, you can run

$python main.py train -h

for further help.

ProFOLD2 logs it's metrics to TensorBoard. You can run

$tensorboard --logdir=OUTPUT_DIR

Then open http://localhost:6006 in you browser.

  1. Inference
$python main.py predict --models [MODEL_NAME1:]MODEL_FILE1 [MODEL_NAME2:]MODEL_FILE2

Just like train, you can run

$python main.py predict -h

About

ProFOLD2 - A protein 3D structure prediction application

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •