Skip to content

Conversation

Goekdeniz-Guelmez
Copy link
Contributor

No description provided.

@Goekdeniz-Guelmez
Copy link
Contributor Author

addreses #404

@Goekdeniz-Guelmez
Copy link
Contributor Author

this is not tested, I will do so when I'm home.

@Goekdeniz-Guelmez
Copy link
Contributor Author

also #409

@Blaizzy
Copy link
Owner

Blaizzy commented Jul 22, 2025

this is not tested, I will do so when I'm home.

Is it ready?

@Blaizzy
Copy link
Owner

Blaizzy commented Sep 3, 2025

ping @Goekdeniz-Guelmez

@Goekdeniz-Guelmez
Copy link
Contributor Author

shoudl be working, can you try it out too @Blaizzy ?

@Goekdeniz-Guelmez
Copy link
Contributor Author

python -m mlx_vlm.lora
--model-path mlx-community/Qwen2-VL-2B-Instruct-bf16
--dataset TIGER-Lab/VisualWebInstruct-Seed --dataset-config 'reference'
--output-path /Volumes/T7_Shield/mlx-vlm
--batch-size 1
--steps 20
--learning-rate 1e-4
INFO:main:Loading model from mlx-community/Qwen2-VL-2B-Instruct-bf16
Fetching 11 files: 100%|█████████████████████████████████████████████| 11/11 [00:00<00:00, 13768.23it/s]
The image processor of type Qwen2VLImageProcessor is now loaded as a fast processor by default, even if the model checkpoint was saved with a slow processor. This is a breaking change and may produce slightly different outputs. To continue using the slow processor, instantiate this class with use_fast=False. Note that this behavior will be extended to all models in a future release.
Fetching 11 files: 100%|█████████████████████████████████████████████| 11/11 [00:00<00:00, 74295.24it/s]
INFO:main:Loading dataset from TIGER-Lab/VisualWebInstruct-Seed
INFO:main:Applying chat template to the dataset
INFO:main:Setting up LoRA
#trainable params: 11.54048 M || all params: 1543.714304 M || trainable%: 0.748%
INFO:main:Setting up optimizer
INFO:main:Setting up trainer
INFO:main:Training model
{'Epoch': 0, 'Step': 0, 'Loss': '1.2262'}
{'Epoch': 0, 'Step': 10, 'Loss': '1.7623'}
100%|████████████████████████████████████| 20/20 [00:51<00:00, 2.55s/it, Epoch=0, Step=19, Loss=1.9172]

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants