-
Notifications
You must be signed in to change notification settings - Fork 685
Description
使用ML-1M数据集运行KD_DAGFM_train时,报错如下:
File "D:\Tools\PyCharm2024\WorkSpace\Recbole\RecBole-master\recbole\model\exlib_recommender_init_.py", line 1, in
from recbole.model.exlib_recommender.lightgbm import LightGBM
File "D:\Tools\PyCharm2024\WorkSpace\Recbole\RecBole-master\recbole\model\exlib_recommender\lightgbm.py", line 11, in
import lightgbm as lgb
ModuleNotFoundError: No module named 'lightgbm'
recbole版本:1.1.1
ymal文件如下:
model config
model: KD_DAGFM
dataset: ml-1m
embedding_size: 10
reg_weight: 2
seed: 2020
teacher: CrossNet
phase: teacher_training
type: outer
t_depth: 3
depth: 3
alpha: 0.1
beta: 921.6
t_cin: [200, 200, 200]
dataset config
field_separator: "\t" # 指定数据集field的分隔符
seq_separator: " " # 指定数据集中token_seq或者float_seq域里的分隔符
USER_ID_FIELD: user_id # 指定用户id域(目标域)
ITEM_ID_FIELD: item_id # 指定物品id域(武器域)
RATING_FIELD: rating # 指定打分rating域
TIME_FIELD: timestamp # 指定时间域
NEG_PREFIX: neg_ # 指定负采样前缀
LABEL_FIELD: label # 指定标签域
threshold:
rating: 3
制定从什么文件里读什么列,这里就是从ml-1m.inter里面读取user_id,item_id,rating,timestamp这四列
load_col:
inter: [user_id, item_id, rating]
user: [user_id, age, gender, occupation]
item: [item_id,movie_title, release_year, genre]
training settings
epochs: 300 # 训练的最大轮数
train_batch_size: 4096 # 训练的batch_size
learner: adam # 使用的pytorch内置优化器
learning_rate: 0.001 # 学习率
train_neg_sample_args: ~
eval_step: 1 # 每次训练后做evalaution的次数
stopping_step: 30 # 控制训练收敛的步骤数,在该步骤内若选取的评测标准没有什么变化,就可以提前终止
evalution settings
eval_args:
split: {'RS': [0.8,0.1,0.1]} # 划分比例
order: RO
guoup_by: ~
mode: labeled
metrics: ["AUC","Logloss"] # 评测标准
valid_metric: AUC
eval_batch_size: 4096 # 评测的batch_size