Autonomous AI Research Assistant - 100% Free Edition
Discover research gaps, generate hypotheses, and run experiments using only free resources!
AI Researcher Free is a complete autonomous research assistant that can analyze literature, identify research gaps, generate novel hypotheses, and run machine learning experiments - all without any costs or API keys required.
- ❌ No API keys required
- ❌ No subscription fees
- ❌ No usage limits
- ✅ Complete offline capability
- ✅ Free cloud integration ready
- 📚 Literature Analysis: Scrape and analyze papers from arXiv
- 🔍 Gap Identification: Automatically find underexplored research areas
- 💡 Hypothesis Generation: Create testable research hypotheses
- 🧪 Experiment Runner: Design and execute ML experiments
- 📊 Trend Analysis: Identify patterns in research literature
- 🌐 Web Interface: Beautiful Streamlit and Gradio apps
- 📓 Jupyter Notebook: Interactive research environment
- 🖥️ Command Line: Quick start demo script
- 📱 API Ready: Programmatic access to all features
- 💻 Local CPU/GPU: Run on your own hardware
- ☁️ Google Colab: Free GPU access
- 🦙 Ollama Integration: Local LLM support
- 🤗 Hugging Face: Free model hosting
# Clone the repository
git clone https://github.com/Sreeram5678/AI-Researcher.git
cd AI-Researcher
# Run the setup script
chmod +x setup.sh
./setup.sh
# Activate environment
source venv/bin/activate
# Run quick start demo
python demo/quick_start.py
# Streamlit (recommended)
streamlit run demo/streamlit_app.py
# Or Gradio
python demo/gradio_app.py
jupyter notebook demo/jupyter_demo.ipynb
from core.free_knowledge_base import FreeKnowledgeBase
# Initialize knowledge base
kb = FreeKnowledgeBase()
# Analyze papers from arXiv
result = kb.ingest_literature(
query="attention mechanisms computer vision",
max_papers=50
)
# Get statistics
stats = kb.get_statistics()
print(f"Analyzed {stats['total_papers']} papers")
# Find research gaps
gaps = kb.find_research_gaps("machine learning")
for gap in gaps[:5]:
print(f"Gap: {gap['concept']}")
print(f"Confidence: {gap['confidence_score']:.2f}")
from core.template_generator import TemplateHypothesisGenerator
# Generate hypotheses
generator = TemplateHypothesisGenerator()
hypotheses = generator.generate_hypotheses(gaps, num_hypotheses=5)
for hypothesis, confidence in hypotheses:
print(f"Hypothesis: {hypothesis}")
print(f"Confidence: {confidence:.2f}")
from core.experiment_runner import FreeExperimentRunner
# Run ML experiment
runner = FreeExperimentRunner()
results = runner.run_vision_experiment(
hypothesis=hypotheses[0][0],
experiment_config={
'dataset': 'cifar10',
'epochs': 10,
'batch_size': 32
}
)
print(f"Test Accuracy: {results['test_results']['accuracy']:.2f}%")
graph TD
A[Literature Analysis] --> B[Knowledge Base]
B --> C[Gap Identification]
C --> D[Hypothesis Generation]
D --> E[Experiment Design]
E --> F[Model Training]
F --> G[Results Analysis]
G --> H[Research Insights]
I[arXiv Papers] --> A
J[Free LLMs] --> D
K[Free Datasets] --> E
L[Local/Cloud GPU] --> F
ai_researcher_free/
├── 📁 core/ # Core system modules
│ ├── free_knowledge_base.py # Literature analysis & storage
│ ├── template_generator.py # Template-based hypothesis generation
│ ├── free_llm_generator.py # Free LLM integration
│ ├── experiment_runner.py # ML experiment execution
│ └── paper_analyzer.py # Research trend analysis
├── 📁 demo/ # User interfaces & examples
│ ├── streamlit_app.py # Web interface (Streamlit)
│ ├── gradio_app.py # Alternative web interface
│ ├── jupyter_demo.ipynb # Interactive notebook
│ └── quick_start.py # Command-line demo
├── 📁 data/ # Data storage
├── 📁 models/ # Downloaded models
├── 📁 results/ # Experiment outputs
├── requirements.txt # Dependencies
├── setup.sh # Installation script
└── README.md # This file
- Identify unexplored research directions
- Generate novel research hypotheses
- Analyze literature trends in your field
- Design preliminary experiments
- Explore new product opportunities
- Analyze competitive landscape
- Generate innovative solutions
- Prototype new approaches
- Understand research methodologies
- Learn about AI/ML techniques
- Practice experiment design
- Explore scientific literature
- Find market gaps and opportunities
- Generate product ideas
- Validate technical feasibility
- Build proof-of-concepts
- 🦙 Ollama: Local LLM hosting (recommended)
- 🤗 Hugging Face: Free inference API (30k requests/month)
- 🌐 Together AI: Free tier available
- 📝 Template-based: Always works offline
- ☁️ Google Colab: 12+ hours free GPU daily
- 📊 Kaggle Kernels: 30 hours/week free GPU
- 🎯 Paperspace: Free tier available
- 💻 Local CPU: Works great for smaller experiments
- 🖼️ Computer Vision: CIFAR-10, MNIST, Fashion-MNIST
- 📝 NLP: IMDB, Reuters, AG News
- 🔊 Audio: LibriSpeech, Common Voice
- 📊 General: UCI ML Repository, Kaggle
# Install Ollama
curl -fsSL https://ollama.com/install.sh | sh
# Download models
ollama pull llama2:7b
ollama pull mistral:7b
ollama pull codellama:7b
# Start server
ollama serve
# In Colab notebook
!git clone https://github.com/Sreeram5678/AI-Researcher.git
%cd AI-Researcher
!pip install -r requirements.txt
# Use free GPU
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using: {device}")
# Get free token from https://huggingface.co/settings/tokens
export HUGGINGFACE_API_KEY="your_free_token_here"
# Or add to .env file
echo "HUGGINGFACE_API_KEY=your_free_token_here" >> .env
Component | Minimum | Recommended |
---|---|---|
RAM | 4GB | 8GB+ |
Storage | 2GB | 10GB+ |
CPU | 2 cores | 4+ cores |
GPU | None (CPU works) | Any CUDA GPU |
Task | CPU (8GB RAM) | GPU (RTX 3090) |
---|---|---|
Literature Analysis (50 papers) | ~3 minutes | ~1 minute |
Hypothesis Generation (5 hyp.) | ~30 seconds | ~10 seconds |
Quick Experiment (5 epochs) | ~5 minutes | ~1 minute |
Full Experiment (50 epochs) | ~45 minutes | ~8 minutes |
Dataset | Model Type | Accuracy | Parameters |
---|---|---|---|
CIFAR-10 | Simple CNN | ~65-75% | ~100K |
CIFAR-10 | Attention CNN | ~70-80% | ~150K |
CIFAR-10 | Simple ViT | ~60-70% | ~200K |
MNIST | Simple CNN | ~95-98% | ~50K |
# Extend domain keywords in template_generator.py
domain_keywords = {
'your_domain': {
'concept': ['your', 'domain', 'keywords'],
'task': ['specific', 'tasks'],
'metric': ['evaluation', 'metrics']
}
}
# Add dataset support in experiment_runner.py
def load_custom_dataset(self):
# Your dataset loading logic
return train_loader, test_loader, num_classes
# Extend model creation in experiment_runner.py
def create_custom_model(self, num_classes):
class CustomModel(nn.Module):
# Your model architecture
pass
return CustomModel(num_classes)
We welcome contributions! Here's how to get started:
- 🐛 Bug Reports: Found an issue? Let us know!
- 💡 Feature Requests: Have an idea? Share it!
- 📝 Documentation: Help improve our docs
- 🔧 Code: Submit pull requests
- 🧪 Testing: Help us test new features
# Fork the repository
git clone https://github.com/Sreeram5678/AI-Researcher.git
cd AI-Researcher
# Create development environment
python -m venv dev_env
source dev_env/bin/activate
pip install -r requirements.txt
pip install -r requirements-dev.txt
# Run tests
pytest tests/
# Run linting
flake8 core/ demo/
black core/ demo/
- 🍴 Fork the repository
- 🌿 Create a feature branch
- ✅ Add tests for new features
- 📝 Update documentation
- 🔍 Run tests and linting
- 📤 Submit a pull request
- 📖 User Guide - Complete usage instructions
- 🔧 Developer Guide - Architecture and customization
- 🚀 Deployment Guide - Cloud deployment options
- 🐛 Troubleshooting - Common issues and solutions
- 📚 Core API - Core module documentation
- 🌐 Web API - Web interface documentation
- 🔌 Integration API - Third-party integrations
- 🎓 Getting Started Tutorial
- 🔬 Research Workflow Tutorial
- 🧪 Custom Experiments Tutorial
- ☁️ Cloud Setup Tutorial
# Fix permission issues
sudo chmod +x setup.sh
# Update pip
pip install --upgrade pip
# Install system dependencies (Ubuntu/Debian)
sudo apt-get update
sudo apt-get install python3-dev build-essential
# Reduce batch size
config['batch_size'] = 16
# Use smaller datasets
config['train_subset_size'] = 200
# Clear GPU cache
torch.cuda.empty_cache()
# Test arXiv access
curl -I https://arxiv.org/
# Use proxy if needed
export https_proxy=your_proxy_here
# Reduce paper count
MAX_PAPERS = 10
# Reinstall requirements
pip install -r requirements.txt --force-reinstall
# Check Python version
python --version # Should be 3.8+
# Update PyTorch
pip install torch torchvision --upgrade
- ✅ Local Processing: All data stays on your machine
- ✅ No Tracking: No analytics or telemetry
- ✅ Open Source: Full transparency
- ✅ Offline Capable: Works without internet
- 🔒 No API Keys: No sensitive credentials needed
- 🛡️ Sandboxed: Runs in isolated environment
- 🔍 Code Review: Open source for security audits
- 📝 Audit Trail: All operations logged
📄 License: Contact Sreeram for licensing terms and permissions.
- 📧 Contact Sreeram at [email protected]
- 📋 Discuss Usage Rights and permissions
- 🤝 Commercial Use - Contact for terms
- 📚 Academic Use - Contact for terms
- 🔒 All Usage requires permission from Sreeram
- 📋 CONTRIBUTING.md - How to contribute to the project
- 📜 CODE_OF_CONDUCT.md - Community guidelines
- 🔒 SECURITY.md - Security policy and reporting
- 📝 CHANGELOG.md - Version history and changes
- 🤗 Hugging Face - For democratizing AI
- 🦙 Ollama - For local LLM hosting
- 📚 arXiv - For open access to research papers
- ☁️ Google Colab - For free GPU access
- 🎓 Academic Community - For open science
- Sreeram - Project creator and maintainer
- All contributors and testers
- Open source AI/ML community
- Researchers sharing their work openly
- Educators promoting AI literacy
We welcome contributions from the community! Whether you're fixing bugs, adding features, or improving documentation, your help makes AI Researcher better for everyone.
- Fork the repository
- Create a feature branch
- Make your changes
- Test thoroughly
- Submit a pull request
- 📋 CONTRIBUTING.md - Detailed contribution guide
- 📜 CODE_OF_CONDUCT.md - Community standards
- 🔒 SECURITY.md - Security reporting
- 🐛 Bug Reports - Help identify and fix issues
- 💡 Feature Requests - Suggest new capabilities
- 📚 Documentation - Improve guides and examples
- 🔧 Code - Submit pull requests with improvements
- 🧪 Testing - Test features and report issues
- 📧 Email: [email protected]
- 💬 Discord: Join our community
- 🐛 Issues: GitHub Issues
- 📚 Docs: Documentation
- ⭐ Star this repository
- 👀 Watch for updates
- 🔔 Follow on Instagram @sreeram_3012
- 📰 Newsletter: Subscribe for updates
- 🤖 Multi-Agent Research: Collaborative AI researchers
- 📊 Advanced Analytics: Deep research insights
- 🌍 Multi-Language: Support for non-English papers
- 🔗 API Gateway: RESTful API for integrations
- 🧠 Neural Architecture Search: Automated model design
- 📱 Mobile App: Research on the go
- 🌐 Federated Learning: Collaborative research networks
- 🎨 Visual Programming: No-code research design
🤖 AI Researcher by Sreeram
Autonomous Research Assistant - 100% Free Forever
💰 $0.00 Cost • 📄 License Required • 🚀 Contact Sreeram