Skip to content

Traffic-Alpha/awesome-V2X

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

66 Commits
 
 
 
 
 
 

Repository files navigation

Awesome V2X

A curated list of Vehicle to X (V2X) resources (continually updated). You can reference Journal Information for more information.

Table of Contents

Paper

format:
- [title](paper link) [links]
  - author1, author2, and author3...
  - keyword
  - publisher
  - code
  - experiment environments and datasets
  - paper reading url

2021

2023

2024

  • World Models for Autonomous Driving: An Initial Survey
    • Yanchen Guan, Haicheng Liao, Zhenning Li, Guohui Zhang, Chengzhong Xu
    • Paper Reading, (World Model, RSSM, PETA, AV)
    • World Model 在 Autonomous Driving 上的综述,主要介绍了两种 World Model 的结构,RSSM 和 JEPA,以及 World Model 在 AV 中的一些应用,(1)场景生成,(2)决策控制;

Traffic Signal Control (信号灯控制)

CAVs and TSC (自动驾驶&信号灯控制)

Driver Simulator (仿真框架)

  • CARLA: An Open Urban Driving Simulator

    • Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, Vladlen Koltun
    • Proceedings of the 1st Annual Conference on Robot Learning, PMLR 78:1-16, 2017.
    • Paper Reading, (Carla 仿真平台)
    • 介绍了 Carla 仿真平台,从两个方面,(1)Carla 仿真部分;(2)自动驾驶实验,测试不同任务下,不同决策方法的结果;
  • Microscopic Traffic Simulation using SUMO

    • Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flotterod, Robert Hilbrich, Leonhard Lucken, Johannes Rummel, Peter Wagner and Evamarie Wießner
    • 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2018
    • Paper Reading, (SUMO 仿真平台,无需多言)
    • 把 SUMO 主要功能介绍了一遍。通过一个例子,介绍了路网生成,流量生成,仿真过程中的模型等。读一下对 SUMO 有更多的理解,有更多场景生成的方式。
  • Flow: A Modular Learning Framework for Mixed Autonomy Traffic

    • Cathy Wu, Abdul Rahman Kreidieh, Kanaad Parvate, Eugene Vinitsky, Alexandre M. Bayen
    • IEEE Transactions on Robotics, vol. 38, no. 2, April 2022
    • Paper Reading, (Flow 混合交通流仿真框架)
    • 混合交通流下的 MDP 数学建模。希望解决混合车辆下对 AVs 的控制,于是提出了框架和任务,并给出基础的实验结果(文章的写作可以参考)。
  • LimSim: A Long-term Interactive Multi-scenario Traffic Simulator

    • Licheng Wen, Daocheng Fu, Song Mao, Pinlong Cai, Min Dou, Yikang Li, Yu Qiao
    • 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 2023
    • Paper Reading, (仿真平台,交通场景介绍)
    • 介绍了一款自动驾驶仿真器,包含多样性的场景和车辆之间的交互。文章里面有对交通仿真器的总结,networkFiles 文件夹里面包含 SUMO 路网,从仿真器四个特色来介绍。
  • MetaDrive: Composing Diverse Driving Scenarios for Generalizable Reinforcement Learning

    • Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, Bolei Zhou
    • IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 3, pp. 3461-3475, 1 March 2023
    • Paper Reading, (仿真平台,自动驾驶泛化性的研究)
    • MetaDrive 目标是具有泛化性的自动驾驶,提出了框架和一些自动驾驶任务(文章的写作可以参考)。

2025

  • LLMLight: Large Language Models as Traffic Signal Control Agents

    • Lai, Siqi and Xu, Zhao and Zhang, Weijia and Liu, Hao and Xiong, Hui
    • Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2025)
    • Paper Reading
    • Keywords: Traffic signal control, large language model
    • LLMLight 利用大型语言模型作为交通信号控制代理,通过常识增强提示和专门训练的 LightGPT 实现高效、泛化且可解释的交通管理。包含根据专家数据微调,和根据 Q function 对动作打分从而计算偏好。
  • Traffic-R1: Reinforced LLMs Bring Human-Like Reasoning to Traffic Signal Control Systems

    • Xingchen Zou, Yuhao Yang, Zheng Chen, Xixuan Hao, Yiqi Chen, Chao Huang, Yuxuan Liang
    • Paper Reading | Arxiv
    • Keywords: Traffic signal control, large language model, GRPO
    • Traffic-R1 是一个基于轻量级大语言模型的交通信号控制系统,通过两阶段RL微调和异步通信网络实现类似人类的推理与多路口协调。
  • CoLLMLight: Cooperative Large Language Model Agents for Network-Wide Traffic Signal Control

    • Zirui Yuan, Siqi Lai, Hao Liu
    • Paper Reading | Arxiv
    • Keywords: Traffic Signal control, Large Language Model, Multi-Agent Cooperation, Intelligent Transportation
    • CoLLMLight 是一个合作型大语言模型代理框架,用于网络级交通信号控制,通过构建时空图捕捉交通动态、采用复杂度感知推理机制实现高效决策,并利用模拟驱动细调提升性能,在合成和真实数据集上优于现有方法。

License

Awesome V2X is released under the Apache 2.0 license.

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages