Python client for the PerigonΒ API
A modern, fullyβtyped Python SDK for the Perigon API, generated from the official OpenAPI specification.
Works in CPython 3.8+, PyPy, serverless runtimes, notebooks, and async frameworks.
- Typeβhinted request/response models powered by Pydantic
- Async and sync support - choose the right approach for your application
- Ships with PEP 561 type hints for excellent IDE integration
- Generated directly from https://docs.perigon.io, so it's always in sync
pip install perigon
# poetry add perigon
# pipx install perigon
from perigon import V1Api, ApiClient
# Create client with API key
api = V1Api(ApiClient(api_key="YOUR_API_KEY"))
# Alternative: environment variable or callable
# api = V1Api(ApiClient(api_key=os.environ["PERIGON_API_KEY"]))
# api = V1Api(ApiClient(api_key=lambda: get_api_key_from_vault()))
# π Search recent news articles (sync)
articles = api.search_articles(q="artificial intelligence", size=5)
print(articles.num_results, articles.articles[0].title)
# π€ Look up a journalist by ID (sync)
journalist = api.get_journalist_by_id(id="123456")
print(journalist.name)
# π Use async variant for async applications
import asyncio
async def fetch_data():
# Search articles asynchronously
articles = await api.search_articles_async(q="technology", size=5)
# Look up journalist asynchronously
journalist = await api.get_journalist_by_id_async(id="123456")
return articles, journalist
# Run in async context
articles, journalist = asyncio.run(fetch_data())
All methods return typed objects with full IDE autocompletion support.
Docs β https://dev.perigon.io/reference?endpoint=11
# Simple query
articles = api.search_articles(q="technology", size=5)
# With date range
articles = api.search_articles(
q="business",
var_from="2025-04-01", # Note: 'from' is a reserved keyword in Python
to="2025-04-08"
)
# Restrict to specific sources
articles = api.search_articles(source=["nytimes.com"])
Docs β https://dev.perigon.io/reference?endpoint=2
results = api.search_companies(name="Apple", size=5)
Docs β https://dev.perigon.io/reference?endpoint=2
# Search for journalists
results = api.search_journalists1(name="Kevin", size=1)
# Get detailed information
journalist = api.get_journalist_by_id(id=results.journalists[0].id)
Docs β https://dev.perigon.io/reference?endpoint=7
stories = api.search_stories(q="climate change", size=5)
Docs β https://dev.perigon.io/reference?endpoint=10
from perigon.models.article_search_params import ArticleSearchParams
results = api.vector_search_articles(
article_search_params=ArticleSearchParams(
prompt="Latest advancements in artificial intelligence",
size=5
)
)
Docs β https://dev.perigon.io/reference?endpoint=8
from perigon.models.summary_body import SummaryBody
summary = api.search_summarizer(
summary_body=SummaryBody(prompt="Key developments"),
q="renewable energy",
size=10
).summary
print(summary)
Docs β https://dev.perigon.io/reference?endpoint=9
topics = api.search_topics(size=10)
Docs β https://dev.perigon.io/reference?endpoint=13
# Search Wikipedia pages
wikipedia_result = api.search_wikipedia(
q="machine learning",
size=3,
sort_by="relevance"
)
# Filter by specific criteria
wikipedia_result = api.search_wikipedia(
q="artificial intelligence",
pageviews_from=100, # Only popular pages
)
Docs β https://dev.perigon.io/reference?endpoint=12
from perigon.models.wikipedia_search_params import WikipediaSearchParams
results = api.vector_search_wikipedia(
wikipedia_search_params=WikipediaSearchParams(
prompt="artificial intelligence and neural networks in computing",
size=3,
pageviews_from=100
)
)
Action | Code Example |
---|---|
Filter by source | api.search_articles(source=["nytimes.com"]) |
Limit by date range | api.search_articles(q="business", var_from="2025-04-01", to="2025-04-08") |
Company lookup | api.search_companies(name="Apple", size=5) |
Summarize any query | api.search_summarizer(summary_body=SummaryBody(prompt="Key points"), q="renewable energy", size=20) |
Semantic / vector search | api.vector_search_articles(article_search_params=ArticleSearchParams(prompt="advancements in AI", size=5)) |
Retrieve available taxonomic topics | api.search_topics(size=10) |
Search Wikipedia pages | api.search_wikipedia(q="machine learning", size=3, sort_by="relevance") |
Wikipedia semantic search | api.vector_search_wikipedia(wikipedia_search_params=WikipediaSearchParams(prompt="artificial intelligence", size=3)) |
All methods have async counterparts with the _async
suffix:
import asyncio
from perigon import V1Api, ApiClient
async def main():
api = V1Api(ApiClient(api_key="YOUR_API_KEY"))
# Concurrent API calls
articles_task = api.search_articles_async(q="technology", size=5)
journalist_task = api.get_journalist_by_id_async(id="123456")
# Gather results
articles, journalist = await asyncio.gather(articles_task, journalist_task)
return articles, journalist
# Run the async function
articles, journalist = asyncio.run(main())
MIT Β© Perigon